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1971/1.
Prove that the following assertion is true for n = 3 and n = 5, and that it is
false for every other natural number n > 2 :
If a1, a2, ..., an are arbitrary real numbers, then
(a1 − a2)(a1 − a3) · · · (a1 − an) + (a2 − a1)(a2 − a3) · · · (a2 − an)
+ · · ·+ (an − a1)(an − a2) · · · (an − an−1) ≥ 0

1971/2.
Consider a convex polyhedron P1 with nine vertices A1A2, ..., A9; let Pi be
the polyhedron obtained from P1 by a translation that moves vertex A1 to
Ai(i = 2, 3, ..., 9). Prove that at least two of the polyhedra P1, P2, ..., P9 have
an interior point in common.

1971/3.
Prove that the set of integers of the form 2k − 3(k = 2, 3, ...) contains an
infinite subset in which every two members are relatively prime.

1971/4.
All the faces of tetrahedron ABCD are acute-angled triangles. We consider
all closed polygonal paths of the form XY ZTX defined as follows: X is a
point on edge AB distinct from A and B; similarly, Y, Z, T are interior points
of edges BCCD, DA, respectively. Prove:
(a) If 6 DAB + 6 BCD 6= 6 CDA + 6 ABC, then among the polygonal paths,
there is none of minimal length.
(b) If 6 DAB + 6 BCD = 6 CDA + 6 ABC, then there are infinitely many
shortest polygonal paths, their common length being 2AC sin(α/2), where
α = 6 BAC + 6 CAD + 6 DAB.

1971/5.
Prove that for every natural number m, there exists a finite set S of points
in a plane with the following property: For every point A in S, there are
exactly m points in S which are at unit distance from A.

1971/6.
Let A = (aij)(i, j = 1, 2, ..., n) be a square matrix whose elements are non-
negative integers. Suppose that whenever an element aij = 0, the sum of the
elements in the ith row and the jth column is ≥ n. Prove that the sum of
all the elements of the matrix is ≥ n2/2.


